HomeAboutMeBlogGuest
© 2025 Sejin Cha. All rights reserved.
Built with Next.js, deployed on Vercel
역수직구조
역수직구조
/
💻
Backend 참고 자료
💻

Backend 참고 자료

  • MongoDB Index에 대한 자료들
    • Indexes - Data Wranging with MongoDB
      This video is part of an online course, Data Wrangling with MongoDB. Check out the course here: https://www.udacity.com/course/ud032. This course was designe...
      Indexes - Data Wranging with MongoDB
      https://youtu.be/tSgPhxZdhLk
      Indexes - Data Wranging with MongoDB
      MongoDB Index 설계 전략
      인터넷에는 셀 수 없이 많은 정보들이 있습니다. 2020년이면 인터넷의 정보량이 40제타바이트에 이를 것이라고 합니다. 1 제타바이트는 10 21, 그러니까 1,000,000,000,000,000,000,000 byte이니 상상도 할 수 없을 정도의 양입니다. 하지만, 우리가 원하는 정보를 찾을 때는 어떻습니까? 검색어 몇 번 입력하면 꽤 높은 확률로 필요한 정보를 얻을 수 있습니다. 무엇이 이를 가능하게 하는 걸까요?
      MongoDB Index 설계 전략
      https://blog.ull.im/engineering/2019/04/05/mongodb-indexing-strategy.html
      MongoDB Index 설계 전략
      Data Modeling Introduction - MongoDB Manual
      The key challenge in data modeling is balancing the needs of the application, the performance characteristics of the database engine, and the data retrieval patterns. When designing data models, always consider the application usage of the data (i.e. queries, updates, and processing of the data) as well as the inherent structure of the data itself.
      Data Modeling Introduction - MongoDB Manual
      https://docs.mongodb.com/manual/core/data-modeling-introduction/
      Data Modeling Introduction - MongoDB Manual
      Data Model Design - MongoDB Manual
      Effective data models support your application needs. The key consideration for the structure of your documents is the decision to embed or to use references. With MongoDB, you may embed related data in a single structure or document. These schema are generally known as "denormalized" models, and take advantage of MongoDB's rich documents.
      Data Model Design - MongoDB Manual
      https://docs.mongodb.com/manual/core/data-model-design/
      Data Model Design - MongoDB Manual
      Indexes - MongoDB Manual
      Indexes support the efficient execution of queries in MongoDB. Without indexes, MongoDB must perform a collection scan, i.e. scan every document in a collection, to select those documents that match the query statement. If an appropriate index exists for a query, MongoDB can use the index to limit the number of documents it must inspect.
      Indexes - MongoDB Manual
      https://docs.mongodb.com/manual/indexes/
      Indexes - MongoDB Manual
      Production Notes - MongoDB Manual
      MongoDB 4.2 removes the deprecated MMAPv1 storage engine. To change your MMAPv1 storage engine deployment to WiredTiger Storage Engine, see: While MongoDB supports a variety of platforms, the following operating systems are recommended for production use on x86_64 architecture: Amazon Linux 2 Debian 9 and 10 RHEL / CentOS 6, 7, and 8 SLES 12 and 15 Ubuntu LTS 16.04, 18.04, and 20.04 Windows Server 2016 and 2019 Be sure you have the latest stable release.
      Production Notes - MongoDB Manual
      https://docs.mongodb.com/manual/administration/production-notes/#concurrency
      Production Notes - MongoDB Manual
 
  • T아카데미 - MongoDB 프로그래밍
    • 강의 영상
      • MongoDB 프로그래밍 | T아카데미
        T아카데미 온라인 강의 - MongoDB 프로그래밍 https://tacademy.skplanet.com [과정 소개] NoSQL에서 가장 많이 사용하는 솔루션인 MongoDB를 통해 기존 RDBMS와 NoSQL의 차이점과 장단점을 이해하여 NoSQL를 사용할 수 있는 기반 지식을...
        MongoDB 프로그래밍 | T아카데미
        https://youtube.com/playlist?list=PL9mhQYIlKEheyXIEL8RQts4zV_uMwdWFj
        MongoDB 프로그래밍 | T아카데미
    • 강의 자료 pdf
      • MongoDB 프로그래밍 - Google Drive
        MongoDB 프로그래밍 - Google Drive
        https://drive.google.com/drive/folders/194KfTYbOaesW-q9Jwx0AH28rFPOLr1Lk?usp=sharing
        MongoDB 프로그래밍 - Google Drive