HomeAboutMeBlogGuest
© 2025 Sejin Cha. All rights reserved.
Built with Next.js, deployed on Vercel
👻
개발 기록
/
코딩테스트 스터디
코딩테스트 스터디
/
Minimum Time to Collect All Apples in a Tree

Minimum Time to Collect All Apples in a Tree

Link
https://leetcode.com/problems/minimum-time-to-collect-all-apples-in-a-tree/
Deadline
Feb 1, 2023
Status
Archived
Type
Hash Table
Tree
DFS
BFS
Given an undirected tree consisting of n vertices numbered from 0 to n-1, which has some apples in their vertices. You spend 1 second to walk over one edge of the tree. Return the minimum time in seconds you have to spend to collect all apples in the tree, starting at vertex 0 and coming back to this vertex.
The edges of the undirected tree are given in the array edges, where edges[i] = [ai, bi] means that exists an edge connecting the vertices ai and bi. Additionally, there is a boolean array hasApple, where hasApple[i] = true means that vertex i has an apple; otherwise, it does not have any apple.
notion image
Example 3:
Constraints:
  • 1 <= n <= 105
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= ai < bi <= n - 1
  • hasApple.length == n

풀이

재영
효성 https://leetcode.com/problems/minimum-time-to-collect-all-apples-in-a-tree/solutions/3033250/dfs-detailed-explanation/
리팩터링 with 재영
Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,false,false,false,false,false] Output: 0
/** * @param {number} n * @param {number[][]} edges * @param {boolean[]} hasApple * @return {number} */ const minTime = function (n, edges, hasApple) { let result = 0; const graph = Array.from({ length: n }, () => []); edges.forEach(([s, e]) => { graph[s].push(e); graph[e].push(s); }); const dfs = (node, prev) => { let shouldGo = hasApple[node]; for (const next of graph[node]) { if (next !== prev) { const childHasApple = dfs(next, node); if (childHasApple) { shouldGo = true; result += 2; } } } return shouldGo; }; dfs(0, null); return result; };
var minTime = function (n, edges, hasApple) { const children = new Array(n); for (let i = 0; i < n; i++) { children[i] = new Array(); } for (let edge of edges) { children[edge[0]].push(edge[1]); children[edge[1]].push(edge[0]); } let res = 0; const dfs = (node, parent) => { let val = false; for (let child of children[node]) { if (child === parent) continue; res++; const isChildHasApple = dfs(child, node); isChildHasApple ? res++ : res--; val = val || isChildHasApple; } return hasApple[node] ? true : val; } dfs(0); return res; };
var minTime = function (n, edges, hasApple) { const children = new Array(n); for (let i = 0; i < n; i++) { children[i] = new Array(); } for (let edge of edges) { children[edge[0]].push(edge[1]); children[edge[1]].push(edge[0]); } let res = 0; const dfs = (node, parent) => { let val = false; for (let child of children[node]) { if (child === parent) continue; const isChildHasApple = dfs(child, node); if(isChildHasApple) { res += 2; val = true; } } return hasApple[node] ? true : val; } dfs(0); return res; };