HomeAboutMeBlogGuest
© 2025 Sejin Cha. All rights reserved.
Built with Next.js, deployed on Vercel
장지원 페이지/
📕
2024 UGRP
/
Member Page
Member Page
/
[10-29] 추가 수정

[10-29] 추가 수정

Task 1
Model Code
Task 2
import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np import urllib.request import PIL.Image from io import BytesIO import torchvision.transforms as T from PIL import Image import requests from io import BytesIO import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np import urllib.request import PIL.Image from PIL import Image from io import BytesIO import torchvision.transforms as T class FeatureLoss(nn.Module): def __init__(self, m_feat, layer_ids, layer_wgts): super().__init__() self.m_feat = m_feat self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) ] + [f'gram_{i}' for i in range(len(layer_ids))] def make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self.make_features(target, clone=True) in_feat = self.make_features(input) self.feat_losses = [base_loss(input,target)] self.feat_losses += [base_loss(f_in, f_out)*w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() def add_margin(pil_img, top, right, bottom, left, color): width, height = pil_img.size new_width = width + right + left new_height = height + top + bottom result = Image.new(pil_img.mode, (new_width, new_height), color) result.paste(pil_img, (left, top)) return result MODEL_URL = "https://www.dropbox.com/s/04suaimdpru76h3/ArtLine_920.pkl?dl=1 " urllib.request.urlretrieve(MODEL_URL, "ArtLine_920.pkl") path = Path(".") learn=load_learner(path, 'ArtLine_920.pkl')
  • 추가적인 코드 수정 → 모델 학습에 있어 Matrix Loss 변화
    • Colab Error → 여전히 코드 제대로 적용 안됨.. 고려 필요함
    • 데이터들을 빨리 수집해 효과적으로 변환할 수 있는 수단이 뭔지 고려중