HomeAboutMeBlogGuest
© 2025 Sejin Cha. All rights reserved.
Built with Next.js, deployed on Vercel
장지원 페이지/
📕
2024 UGRP
/
Member Page
Member Page
/
장지원
장지원
/
연구 노트

연구 노트

태그
연구
날짜
상태
완료

크롤링 데이터 추가 수집

notion image
 

보고서 내용 요약

연구 목적
데이터 수집하고, 이를 활용해 더 나은 모델 만들고 이를 LLM에 넣어보겠다
연구 내용
  1. DataSet
      • emoset
      • gan
      • crawling
      • 설문 조사
  1. Model
      • ResNet
      • ViT
      • CLIP
  1. PEFT
      • LoRA
  1. method
      • param efficient pretraining 비슷한 field의
      • full fine tuning with little data of our data set
  1. futureWorks
      • LLM 활용
 
++ related work
 

모델 제작 및 test 결과

<결과 정리 table>
ㅤ
ㅤ
CLIP(with emoset)
CLIP(with mone)
CLIP(with crawling)
CLIP(with X)
Pretrain(PEFT)
loss
0.2 이하
0.2 이하
0.2 이하
-
ㅤ
LoRA config
r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, visual_projection, bias="none"
r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, visual_projection, bias="none"
r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, visual_projection, bias="none"
-
ㅤ
loss function
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
-
ㅤ
optimizer
AdamW
AdamW
AdamW
-
ㅤ
prompt
[f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
[f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
[f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
-
train(full finetuning)
epoch
10
10
10
10
ㅤ
loss function
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
ㅤ
optimizer
AdamW
AdamW
AdamW
AdamW
ㅤ
prompt
[f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
[f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
[f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
[f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
ㅤ
train size
0.2
0.2
0.2
0.2
ㅤ
random seed
42
42
42
42
output
accuracy
61.54%
61.54%
61.54%
61.54%
ㅤ
tsne
O
O
O
O
ㅤ
Silhouette Score
0.5422
0.5637
0.6321
0.5056
ㅤ
loss
[2.0093, 2.8423, 1.0086, 1.0494, 1.7056, 1.5294, 0.9401, 0.6743, 0.5783, 1.7595]
[2.5119, 3.5481, 1.8837, 1.5159, 1.3483, 1.0847, 1.0692, 1.9154, 1.5516, 1.3077]
[1.9597, 1.9207, 1.4398, 1.9074, 1.5318, 1.4545, 1.2903, 1.2021, 1.1387, 1.0534]
[2.0093, 1.6136, 3.9201, 1.0728, 2.1742, 1.3275, 1.3556, 1.1783, 1.0104, 0.8990]
t-sne for CLIP(with emoset)
notion image
t-sne for CLIP(with mone)
notion image
t-sne for CLIP(with crawling)
notion image
t-sne for CLIP(with X)
notion image
ㅤ
ㅤ
ViT(with emoset)
ViT(with mone)
ViT(with crawling)
ViT(with X)
Pretrain(PEFT)
loss
0.2 이하
0.2 이하
0.2 이하
-
ㅤ
LoRA config
r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, output.dense , bias="none"
r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, output.dense , bias="none"
r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, output.dense , bias="none"
-
ㅤ
loss function
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
-
ㅤ
optimizer
AdamW
AdamW
AdamW
-
ㅤ
prompt
-
-
-
-
train(full finetuning)
epoch
10
10
10
10
ㅤ
loss function
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
ㅤ
optimizer
AdamW
AdamW
AdamW
AdamW
ㅤ
prompt
-
-
-
-
ㅤ
train size
0.2
0.2
0.2
0.2
ㅤ
random seed
42
42
42
42
output
accuracy
ㅤ
ㅤ
ㅤ
10.26%
ㅤ
tsne
ㅤ
ㅤ
ㅤ
O
ㅤ
Silhouette Score
ㅤ
ㅤ
ㅤ
-0.0166
ㅤ
loss
ㅤ
ㅤ
ㅤ
[1.7635, 0.7548, 0.3577, 0.1841, 0.0988, 0.0578, 0.0375, 0.0264, 0.0197, 0.0153] → overfitting
t-sne for ViT(with emoset)
not yet
t-sne for ViT(with mone)
not yet
t-sne for ViT(with crawling)
not yet
t-sne for ViT(with X)
notion image
ㅤ
ㅤ
ResNet50(with emoset)
ResNet50(with mone)
ResNet50(with crawling)
ResNet50(with X)
Pretrain(PEFT)
loss
0.2 이하
0.2 이하
0.2 이하
-
ㅤ
LoRA config
-
-
-
-
ㅤ
loss function
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
-
ㅤ
optimizer
AdamW
AdamW
AdamW
-
ㅤ
prompt
-
-
-
-
train(full finetuning)
epoch
10
10
10
10
ㅤ
loss function
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
CrossEntropyLoss
ㅤ
optimizer
AdamW
AdamW
AdamW
AdamW
ㅤ
prompt
-
-
-
-
ㅤ
train size
0.2
0.2
0.2
0.2
test
random seed
42
42
42
42
output
accuracy
ㅤ
ㅤ
ㅤ
5.13%
ㅤ
tsne
ㅤ
ㅤ
ㅤ
O
ㅤ
Silhouette Score
ㅤ
ㅤ
ㅤ
0.0581
ㅤ
loss
ㅤ
ㅤ
ㅤ
[1.7927, 1.7385, 1.6950, 1.6560, 1.6202, 1.5855, 1.5523, 1.5202, 1.4875, 1.4570]
t-sne for ResNet50(with emoset)
not yet
t-sne for ResNet50(with mone)
not yet
t-sne for ResNet50(with crawling)
not yet
t-sne for ResNet50(with X)
notion image
 

LLM 추가 활용

notion image