HomeAboutMeBlogGuest
© 2025 Sejin Cha. All rights reserved.
Built with Next.js, deployed on Vercel
장지원 페이지/
📕
2024 UGRP
/
📝
회의록
/
📝
2024/12/01 회의록 (마무리 5)
📝

2024/12/01 회의록 (마무리 5)

 
위 제목은 예시 입니다. 회의록 작성 시 “날짜 ‘회의록’ (회의 내용 요약)” 형식으로 제목을 수정해 주세요:)
2024/12/1 - test
—TAEWAN

[회의 주제]

 
<<최종 보고서 작성>>
 

[To-do]

  1. 연구동기
  1. 연구목표
  1. 연구내용
    1. 3-1. 선행지식
      3-2. 데이터수집
      3-3. 모델구축
  1. 연구결과
  1. 논의
    1. 5-1. 결과분석
      5-2. 향후 연구방향
<연구 동기>
선행 연구
<연구 목적>
데이터 수집하고, 이를 활용해 더 나은 모델 만들고 이를 LLM에 넣어보겠다
<연구 내용>
  1. 선행 지식
    1. DataSet
        • emoset
        • gan
      1. Model
          • ResNet
          • ViT
          • CLIP
    2. PEFT
        • LoRA
  1. 데이터 수집
    1. 설문 조사
    2. emoset
    3. gan
    4. crawling
  1. 모델 제작
      • param efficient pretraining with 비슷한 field의 data set
      • full fine tuning with little data of our data set
<연구 결과>
결과 표
  1. pretrain안된거 먼저 survey에 test - 그 결과보다 최소 10%p 높은 정확도를 보이는 모델을 얻는 것이 목적 부가 목표 - 전체 정확도 60%를 넘는다면 GPT의 성능보다 좋으므로 이를 활용할 방안을 계획하고 실행해본다
    <논의>
    결과 표에 대한 해석
    <결론 및 발전 방향> - HOJIN
    LLM 활용
     
    <결과 정리 table>
    그냥 40.48%
    ㅤ
    ㅤ
    CLIP(with emoset)
    CLIP(with mone)
    CLIP(with crawling)
    CLIP(with X)
    Pretrain(PEFT)
    loss
    0.2 이하
    0.2 이하
    0.2 이하
    -
    ㅤ
    LoRA config
    r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, visual_projection, bias="none"
    r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, visual_projection, bias="none"
    r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, visual_projection, bias="none"
    -
    ㅤ
    loss function
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    -
    ㅤ
    optimizer
    AdamW
    AdamW
    AdamW
    -
    ㅤ
    prompt
    [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
    [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
    [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
    -
    train(full finetuning)
    epoch
    10
    10
    10
    10
    ㅤ
    loss function
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    ㅤ
    optimizer
    AdamW
    AdamW
    AdamW
    AdamW
    ㅤ
    prompt
    [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
    [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
    [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
    [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels]
    ㅤ
    train size
    0.2
    0.2
    0.2
    0.2
    ㅤ
    random seed
    42
    42
    42
    42
    output
    accuracy
    61.54%
    61.54%
    61.54%
    61.54%
    ㅤ
    tsne
    O
    O
    O
    O
    ㅤ
    Silhouette Score
    0.5422
    0.5637
    0.6321
    0.5056
    ㅤ
    loss
    [2.0093, 2.8423, 1.0086, 1.0494, 1.7056, 1.5294, 0.9401, 0.6743, 0.5783, 1.7595]
    [2.5119, 3.5481, 1.8837, 1.5159, 1.3483, 1.0847, 1.0692, 1.9154, 1.5516, 1.3077]
    [1.9597, 1.9207, 1.4398, 1.9074, 1.5318, 1.4545, 1.2903, 1.2021, 1.1387, 1.0534]
    [2.0093, 1.6136, 3.9201, 1.0728, 2.1742, 1.3275, 1.3556, 1.1783, 1.0104, 0.8990]
    1
    notion image
    2
    notion image
    3
    notion image
    4
    notion image
    ㅤ
    ㅤ
    ViT(with emoset)
    ViT(with mone)
    ViT(with crawling)
    ViT(with X)
    Pretrain(PEFT)
    loss
    0.2 이하
    0.2 이하
    0.2 이하
    -
    ㅤ
    LoRA config
    r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, output.dense , bias="none"
    r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, output.dense , bias="none"
    r=8, alpha=16, lora_dropout=0.1, target_modules=k_proj, q_proj, v_proj, output.dense , bias="none"
    -
    ㅤ
    loss function
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    -
    ㅤ
    optimizer
    AdamW
    AdamW
    AdamW
    -
    ㅤ
    prompt
    -
    -
    -
    -
    train(full finetuning)
    epoch
    10
    10
    10
    10
    ㅤ
    loss function
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    ㅤ
    optimizer
    AdamW
    AdamW
    AdamW
    AdamW
    ㅤ
    prompt
    -
    -
    -
    -
    ㅤ
    train size
    0.2
    0.2
    0.2
    0.2
    ㅤ
    random seed
    42
    42
    42
    42
    output
    accuracy
    ㅤ
    ㅤ
    ㅤ
    10.26%
    ㅤ
    tsne
    ㅤ
    ㅤ
    ㅤ
    O
    ㅤ
    Silhouette Score
    ㅤ
    ㅤ
    ㅤ
    -0.0166
    ㅤ
    loss
    ㅤ
    ㅤ
    ㅤ
    [1.7635, 0.7548, 0.3577, 0.1841, 0.0988, 0.0578, 0.0375, 0.0264, 0.0197, 0.0153] → overfitting
    1
     
    2
     
    3
     
    4
    notion image
    ㅤ
    ㅤ
    ResNet50(with emoset)
    ResNet50(with mone)
    ResNet50(with crawling)
    ResNet50(with X)
    Pretrain(PEFT)
    loss
    0.2 이하
    0.2 이하
    0.2 이하
    -
    ㅤ
    LoRA config
    -
    -
    -
    -
    ㅤ
    loss function
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    -
    ㅤ
    optimizer
    AdamW
    AdamW
    AdamW
    -
    ㅤ
    prompt
    -
    -
    -
    -
    train(full finetuning)
    epoch
    10
    10
    10
    10
    ㅤ
    loss function
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    CrossEntropyLoss
    ㅤ
    optimizer
    AdamW
    AdamW
    AdamW
    AdamW
    ㅤ
    prompt
    -
    -
    -
    -
    ㅤ
    train size
    0.2
    0.2
    0.2
    0.2
    test
    random seed
    42
    42
    42
    42
    output
    accuracy
    ㅤ
    ㅤ
    ㅤ
    5.13%
    ㅤ
    tsne
    ㅤ
    ㅤ
    ㅤ
    O
    ㅤ
    Silhouette Score
    ㅤ
    ㅤ
    ㅤ
    0.0581
    ㅤ
    loss
    ㅤ
    ㅤ
    ㅤ
    [1.7927, 1.7385, 1.6950, 1.6560, 1.6202, 1.5855, 1.5523, 1.5202, 1.4875, 1.4570]
    1
     
    2
     
    3
     
    4
    notion image
     

    [세부 내용 메모]

     

    [다음 회의 주제 및 To-do]