위 제목은 예시 입니다. 회의록 작성 시 “날짜 ‘회의록’ (회의 내용 요약)” 형식으로 제목을 수정해 주세요:)
2024/12/1 - test —TAEWAN
[회의 주제]
<<최종 보고서 작성>>
[To-do]
- 연구동기
- 연구목표
- 연구내용
3-1. 선행지식
3-2. 데이터수집
3-3. 모델구축
- 연구결과
- 논의
5-1. 결과분석
5-2. 향후 연구방향
<연구 동기>
선행 연구
<연구 목적>
데이터 수집하고, 이를 활용해 더 나은 모델 만들고 이를 LLM에 넣어보겠다
<연구 내용>
- 선행 지식
- DataSet
- emoset
- gan
- Model
- ResNet
- ViT
- CLIP
- PEFT
- LoRA
- 데이터 수집
- 설문 조사
- emoset
- gan
- crawling
- 모델 제작
- param efficient pretraining with 비슷한 field의 data set
- full fine tuning with little data of our data set
<연구 결과>
결과 표
- pretrain안된거 먼저 survey에 test - 그 결과보다 최소 10%p 높은 정확도를 보이는 모델을 얻는 것이 목적 부가 목표 - 전체 정확도 60%를 넘는다면 GPT의 성능보다 좋으므로 이를 활용할 방안을 계획하고 실행해본다
<논의>
결과 표에 대한 해석
<결론 및 발전 방향> - HOJIN
LLM 활용
<결과 정리 table>
그냥 40.48%
ㅤ | ㅤ | CLIP(with emoset) | CLIP(with mone) | CLIP(with crawling) | CLIP(with X) |
Pretrain(PEFT) | loss | 0.2 이하 | 0.2 이하 | 0.2 이하 | - |
ㅤ | LoRA config | r=8,
alpha=16,
lora_dropout=0.1,
target_modules=k_proj, q_proj, v_proj, visual_projection,
bias="none" | r=8,
alpha=16,
lora_dropout=0.1,
target_modules=k_proj, q_proj, v_proj, visual_projection,
bias="none" | r=8,
alpha=16,
lora_dropout=0.1,
target_modules=k_proj, q_proj, v_proj, visual_projection,
bias="none" | - |
ㅤ | loss function | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss | - |
ㅤ | optimizer | AdamW | AdamW | AdamW | - |
ㅤ | prompt | [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels] | [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels] | [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels] | - |
train(full finetuning) | epoch | 10 | 10 | 10 | 10 |
ㅤ | loss function | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss |
ㅤ | optimizer | AdamW | AdamW | AdamW | AdamW |
ㅤ | prompt | [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels] | [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels] | [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels] | [f"This image likely represents an emotional expression. Considering the visual details and the intention behind the image, it seems to convey a sense of {label}." for label in possible_labels] |
ㅤ | train size | 0.2 | 0.2 | 0.2 | 0.2 |
ㅤ | random seed | 42 | 42 | 42 | 42 |
output | accuracy | 61.54% | 61.54% | 61.54% | 61.54% |
ㅤ | tsne | O | O | O | O |
ㅤ | Silhouette Score | 0.5422 | 0.5637 | 0.6321 | 0.5056 |
ㅤ | loss | [2.0093, 2.8423, 1.0086, 1.0494, 1.7056, 1.5294, 0.9401, 0.6743, 0.5783, 1.7595] | [2.5119, 3.5481, 1.8837, 1.5159, 1.3483, 1.0847, 1.0692, 1.9154, 1.5516, 1.3077] | [1.9597, 1.9207, 1.4398, 1.9074, 1.5318, 1.4545, 1.2903, 1.2021, 1.1387, 1.0534] | [2.0093, 1.6136, 3.9201, 1.0728, 2.1742, 1.3275, 1.3556, 1.1783, 1.0104, 0.8990] |
1

2

3

4

ㅤ | ㅤ | ViT(with emoset) | ViT(with mone) | ViT(with crawling) | ViT(with X) |
Pretrain(PEFT) | loss | 0.2 이하 | 0.2 이하 | 0.2 이하 | - |
ㅤ | LoRA config | r=8,
alpha=16,
lora_dropout=0.1,
target_modules=k_proj, q_proj, v_proj, output.dense ,
bias="none" | r=8,
alpha=16,
lora_dropout=0.1,
target_modules=k_proj, q_proj, v_proj, output.dense ,
bias="none" | r=8,
alpha=16,
lora_dropout=0.1,
target_modules=k_proj, q_proj, v_proj, output.dense ,
bias="none" | - |
ㅤ | loss function | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss | - |
ㅤ | optimizer | AdamW | AdamW | AdamW | - |
ㅤ | prompt | - | - | - | - |
train(full finetuning) | epoch | 10 | 10 | 10 | 10 |
ㅤ | loss function | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss |
ㅤ | optimizer | AdamW | AdamW | AdamW | AdamW |
ㅤ | prompt | - | - | - | - |
ㅤ | train size | 0.2 | 0.2 | 0.2 | 0.2 |
ㅤ | random seed | 42 | 42 | 42 | 42 |
output | accuracy | ㅤ | ㅤ | ㅤ | 10.26% |
ㅤ | tsne | ㅤ | ㅤ | ㅤ | O |
ㅤ | Silhouette Score | ㅤ | ㅤ | ㅤ | -0.0166 |
ㅤ | loss | ㅤ | ㅤ | ㅤ | [1.7635, 0.7548, 0.3577, 0.1841, 0.0988, 0.0578, 0.0375, 0.0264, 0.0197, 0.0153] → overfitting |
1
2
3
4

ㅤ | ㅤ | ResNet50(with emoset) | ResNet50(with mone) | ResNet50(with crawling) | ResNet50(with X) |
Pretrain(PEFT) | loss | 0.2 이하 | 0.2 이하 | 0.2 이하 | - |
ㅤ | LoRA config | - | - | - | - |
ㅤ | loss function | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss | - |
ㅤ | optimizer | AdamW | AdamW | AdamW | - |
ㅤ | prompt | - | - | - | - |
train(full finetuning) | epoch | 10 | 10 | 10 | 10 |
ㅤ | loss function | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss | CrossEntropyLoss |
ㅤ | optimizer | AdamW | AdamW | AdamW | AdamW |
ㅤ | prompt | - | - | - | - |
ㅤ | train size | 0.2 | 0.2 | 0.2 | 0.2 |
test | random seed | 42 | 42 | 42 | 42 |
output | accuracy | ㅤ | ㅤ | ㅤ | 5.13% |
ㅤ | tsne | ㅤ | ㅤ | ㅤ | O |
ㅤ | Silhouette Score | ㅤ | ㅤ | ㅤ | 0.0581 |
ㅤ | loss | ㅤ | ㅤ | ㅤ | [1.7927, 1.7385, 1.6950, 1.6560, 1.6202, 1.5855, 1.5523, 1.5202, 1.4875, 1.4570] |
1
2
3
4
