Image-to-Image Conversion (ArtLine)
import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np import urllib.request import PIL.Image from io import BytesIO import torchvision.transforms as T from PIL import Image import requests from io import BytesIO import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np import urllib.request import PIL.Image from PIL import Image from io import BytesIO import torchvision.transforms as T class FeatureLoss(nn.Module): def __init__(self, m_feat, layer_ids, layer_wgts): super().__init__() self.m_feat = m_feat self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) ] + [f'gram_{i}' for i in range(len(layer_ids))] def make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self.make_features(target, clone=True) in_feat = self.make_features(input) self.feat_losses = [base_loss(input,target)] self.feat_losses += [base_loss(f_in, f_out)*w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() def add_margin(pil_img, top, right, bottom, left, color): width, height = pil_img.size new_width = width + right + left new_height = height + top + bottom result = Image.new(pil_img.mode, (new_width, new_height), color) result.paste(pil_img, (left, top)) return result MODEL_URL = "https://www.dropbox.com/s/04suaimdpru76h3/ArtLine_920.pkl?dl=1 " urllib.request.urlretrieve(MODEL_URL, "ArtLine_920.pkl") path = Path(".") learn=load_learner(path, 'ArtLine_920.pkl')
- FastAI, ArtLine Model 이용한 코드
- Model URL을 사용해서 기존의 사진 규격을 스케치 데이터로 효과적인 변환 가능
지난 환경 에러는 파이썬 / 코랩 버전 에러로, 다음과 같이 수정하면 됨# !pip install -r colab_requirements.txt !pip install git+https://github.com/fastai/fastai1.git
→ 감정 분류를 “사람 표정” 으로 정하는 경향이 많음
- 이를 먼저 고려해서 데이터 라벨링을 해보기
Example (Sad Portrait)


- Line Conversion은 빠르게 이룰 수 있음
- 이게 과연 ViT에서 효과적으로 작용할 수 있을까? 는 다른 문제
- 1단계로, 데이터 크롤링 코드로 데이터 링크 수집
- 2단계로, ViT (LoRA.. etc) 로 정확도 검증 필요
